martes, 1 de noviembre de 2016

sábado, 24 de septiembre de 2016

Investigadores de la FCE desarrollan sistema de visión artificial inteligente

Investigadores de la FCE desarrollan sistema de visión artificial inteligente


Puebla, Pue.-

Investigadores de la Facultad de Ciencias de la Electrónica (FCE) de la BUAP diseñaron un sistema de visión artificial inteligente, útil para la industria al localizar y reconocer automáticamente componentes electrónicos, piezas y materiales en la fabricación de diferentes aparatos.
Jaime Cid Monjaraz, profesor investigador de la FCE, dio a conocer que dicho sistema está conformado por una serie de cámaras web que actúan como sensores de visión, capaces de identificar cualquier objeto que se desee, así como la función del mismo, gracias a que trabajan con un conjunto de algoritmos programados por ellos mismos, y que pueden ser procesados por una microcomputadora.
De este modo es posible ubicar algún elemento dentro de una habitación o espacio específico, de forma automática y en cuestión de segundos, a través de la implementación de patrones de reconocimiento de ciertas características que son captadas por la cámara y reproducidas en un plano de imágenes en dos dimensiones.
“Este procedimiento lo llevamos a cabo en el reconocimiento de diferentes tarjetas electrónicas y el sistema identificó el modelo de cada una, así como todos los componentes que la conformaban”, comentó.
Actualmente, el equipo de investigación trabaja en la adaptación de este sistema de visión inteligente, tanto en un brazo robótico como en una banda transportadora. “Esto permitirá que las cámaras verifiquen que las tarjetas electrónicas que pasen por la banda estén completas, así como reportar a la persona encargada de la producción sobre los casos en los que les haga falta algún aditamento, como un transistor, un chip, un led, etcétera”.
Cid Monjaraz señaló que estas funciones posibilitan un mayor control en los sistemas de calidad de los diferentes tipos de industrias y empresas, al asegurar que los productos y aparatos que se producen cuenten con todos los elementos necesarios una vez que han sido fabricados y con ello evitar algún error que haya pasado por alto el ojo humano.
“Además, los algoritmos que introducimos en el sistema pueden ser de gran utilidad en diferentes áreas de trabajo, como por ejemplo en el reconocimiento de señales de emergencia en las fábricas, la identificación de libros en una tienda, el rastreo de objetos perdidos, la supervisión del llenado de botellas y otras actividades que requieran de una evaluación minuciosa”, recalcó.
Para llevar a cabo esta función, lo primero es almacenar una serie de fotos e imágenes de las cosas que se desean reconocer con la cámara, para que al momento de que ésta realice la búsqueda reconozca los patrones y características de los objetos en la base de datos y establezca una relación.
Esto quiere decir que si una persona que se encuentra en una habitación, taller o laboratorio necesita encontrar una memoria, tornillo o tarjeta, podrá buscarlo de forma sencilla y eficaz sólo con introducir las características del objeto en el sistema, el cual escaneará el lugar, por medio de las cámaras, hasta encontrar lo que se busca, sin importar la posición del objeto.
Cid Monjaraz, doctor en Ingeniería Mecatrónica, enfatizó que toda la transferencia de información de las cámaras hacia el sistema es por medio de una red inalámbrica y que la captura de imágenes se lleva a cabo en tiempo real.
En este proyecto también participa el doctor Fernando Reyes Cortés, profesor investigador de la FCE. Cuenta con dos registros de solicitud de patente ante el Instituto Mexicano de la Propiedad Industrial, una con el nombre de “Sistema de Control de Movimiento para un Robot de Transmisión Directa Mediante Retroalimentación Visual”, número MX/E/2015/053144; y la otra, “Sistema para Automatización de Banda Transportadora con Retroalimentación Visual”, número MX/E/2015/053086.
De igual forma, tiene dos solicitudes de registro de patente ante el Internacional Patent System del World Intellectual Property Organization (WIPO), con los títulos “Motion Control System for a Direct Drive Robot Through Visual Servoing” y “System for Conveyor belt Automation with Visual Servoing”, respectivamente.

martes, 9 de agosto de 2016

Galardonan a investigadores de la UAP

09, AGO 2011 A LAS 15:45
El ex regidor perredista Jaime Cid y Fernando Reyes son premiados por su contribución en controladores visuales en robótica

Un artículo desarrollado por investigadores de la UAP, relacionado con controladores visuales en robótica, fue seleccionado como el mejor trabajo, durante la Décima Conferencia Iberoamericana de Sistemas, Cibernética e Informática: CISCI 2011, que se desarrolló del 19 al 22 de julio en Orlando, Florida, Estados Unidos.

Jaime Cid Monjaraz y Fernando Reyes Cortés, profesores e investigadores del Centro Universitario de Vinculación de la VIEP y de la Facultad de Ciencias de la Electrónica, luego de someter su trabajo a un amplio proceso de evaluación, participaron con la ponencia "Controlador con retroalimentación visual para Brazo Robot¨.

El doctor Cid Monjaraz, quien presentó la ponencia, dio a conocer que el Presidente del Comité de programa, Nagib C. Callaos, le envió el documento que avala dicho reconocimiento, que se obtuvo durante la sesión: “Sistemas/Tecnologías de Control y sus Aplicaciones / Procesamiento de Imágenes ”.

Explicó que para la Conferencia se recibieron un total de 388 artículos y resúmenes, de los cuales se aceptaron 173 para ser presentados, luego de que cada uno fuera sometido a un promedio de seis minuciosas y estrictas evaluaciones, que hicieron un total de dos mil 359 revisiones.

Dicha revisión, similar a la de una revista especializada, permitió que tales trabajos se incluyeran en las memorias de la Conferencia y se espera sean incluidas en revistas científicas, debido a su alta calidad.

“Por ello es aún más satisfactorio hacer recibido dicho reconocimiento, que nos motiva a publicar un libro, como resultado del trabajo desarrollado en materia de controladores con retroalimentación visual para robótica”, agregó el investigador.
Cabe destacar que en el contexto de la CISCI 2011, se realizaron: El Octavo Simposio Iberoamericano de Educación, Cibernética e Informática: SIECI 2011, el Tercer Simposio Iberoamericano en Generación, Comunicación y Gerencia del Conocimiento: GCGC 2011 y la Tercera Conferencia Ibero-Americana de Ingeniería e Innovación Tecnológica: CIIIT 2011.

“Esta Conferencia ha sido organizada y patrocinada por el International Institute of Informatics and Systemics (IIIS), miembro de la International Federation for Systems Research (IFSR)”.

Explicó que se trató de una multi-conferencia, donde los participantes pudieron centrarse en un área y una disciplina, además de tener la posibilidad de asistir a ponencias en otras áreas bajo un enfoque sistémico que estimula la fertilización cruzada entre diversas disciplinas.

Este método, agregó, inspira a los especialistas, genera analogías y provoca innovaciones; uno de los principios básicos del movimiento de sistemas y un objetivo fundamental de la cibernética.

“Sistémica, cibernética e informática son tres áreas muy relacionadas e integradas entre sí, cuyas aplicaciones en la sociedad y en el ámbito corporativo, han venido aumentando paulatinamente e intensificándose continuamente, lo que fomenta innumerables aplicaciones en el ámbito corporativo y de negocios, de ahí su enorme importancia”, concluyó Cid Monjaraz.

Galardonan a investigadores de la UAP

09, AGO 2011 A LAS 15:45
El ex regidor perredista Jaime Cid y Fernando Reyes son premiados por su contribución en controladores visuales en robótica

Un artículo desarrollado por investigadores de la UAP, relacionado con controladores visuales en robótica, fue seleccionado como el mejor trabajo, durante la Décima Conferencia Iberoamericana de Sistemas, Cibernética e Informática: CISCI 2011, que se desarrolló del 19 al 22 de julio en Orlando, Florida, Estados Unidos.

Jaime Cid Monjaraz y Fernando Reyes Cortés, profesores e investigadores del Centro Universitario de Vinculación de la VIEP y de la Facultad de Ciencias de la Electrónica, luego de someter su trabajo a un amplio proceso de evaluación, participaron con la ponencia "Controlador con retroalimentación visual para Brazo Robot¨.

El doctor Cid Monjaraz, quien presentó la ponencia, dio a conocer que el Presidente del Comité de programa, Nagib C. Callaos, le envió el documento que avala dicho reconocimiento, que se obtuvo durante la sesión: “Sistemas/Tecnologías de Control y sus Aplicaciones / Procesamiento de Imágenes ”.

Explicó que para la Conferencia se recibieron un total de 388 artículos y resúmenes, de los cuales se aceptaron 173 para ser presentados, luego de que cada uno fuera sometido a un promedio de seis minuciosas y estrictas evaluaciones, que hicieron un total de dos mil 359 revisiones.

Dicha revisión, similar a la de una revista especializada, permitió que tales trabajos se incluyeran en las memorias de la Conferencia y se espera sean incluidas en revistas científicas, debido a su alta calidad.

“Por ello es aún más satisfactorio hacer recibido dicho reconocimiento, que nos motiva a publicar un libro, como resultado del trabajo desarrollado en materia de controladores con retroalimentación visual para robótica”, agregó el investigador.
Cabe destacar que en el contexto de la CISCI 2011, se realizaron: El Octavo Simposio Iberoamericano de Educación, Cibernética e Informática: SIECI 2011, el Tercer Simposio Iberoamericano en Generación, Comunicación y Gerencia del Conocimiento: GCGC 2011 y la Tercera Conferencia Ibero-Americana de Ingeniería e Innovación Tecnológica: CIIIT 2011.

“Esta Conferencia ha sido organizada y patrocinada por el International Institute of Informatics and Systemics (IIIS), miembro de la International Federation for Systems Research (IFSR)”.

Explicó que se trató de una multi-conferencia, donde los participantes pudieron centrarse en un área y una disciplina, además de tener la posibilidad de asistir a ponencias en otras áreas bajo un enfoque sistémico que estimula la fertilización cruzada entre diversas disciplinas.

Este método, agregó, inspira a los especialistas, genera analogías y provoca innovaciones; uno de los principios básicos del movimiento de sistemas y un objetivo fundamental de la cibernética.

“Sistémica, cibernética e informática son tres áreas muy relacionadas e integradas entre sí, cuyas aplicaciones en la sociedad y en el ámbito corporativo, han venido aumentando paulatinamente e intensificándose continuamente, lo que fomenta innumerables aplicaciones en el ámbito corporativo y de negocios, de ahí su enorme importancia”, concluyó Cid Monjaraz.

jueves, 7 de julio de 2016

Lugar geométrico de las raices control 1

  1. 1. Universidad Nacional Mayor de San Marcos (Universidad del Perú, Decana de América) Sistemas de Control I “Lugar Geométricos de las Raices”  Nombre:  Pariona Curi, Marvin 10190235  Profesor: Ing. Jo  Horario: Lunes – Martes 2:00-4:00 p.m. 2014
  2. 2. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 2 LUGAR GEOMÉTRICO DE LAS RAICES INTRODUCCION: La estabilidad relativa y la respuesta transitoria de un sistema de control en lazo cerrado están directamente relacionadas con la localización de los polos de dicha función de transferencia (o las raíces de la función característica) en el plano complejo, por tal razón es necesario analizar el comportamiento de los polos del sistema en lazo cerrado a la variación de los parámetros, en otras palabras, es importante el análisis del Lugar geométrico de las raíces del sistema en lazo cerrado. Cuando se trata de sistemas de control es sumamente importante conocer la ubicación de las raíces de la ecuación característica del lazo cerrado, lo cual puede conocerse utilizando un método sistemático y sencillo que muestra el movimiento de dichas raíces cuando se modifica un parámetro de la ecuación. Dicho método permite elaborar lo que se conoce como el lugar geométrico de las raíces (LGR), que no es otra cosa que las soluciones de la ecuación característica a lazo cerrado cuando se varía un parámetro. DEFINICIÓN DEL LUGAR GEOMÉTRICO DE LAS RAÍCES: La técnica del lugar Geométrico de las Raíces (LGR) es un método gráfico para dibujar la posición de los polos del sistema en el plano complejo a medida que varía un parámetro, la información que proporciona este método es utilizada para el análisis de la estabilidad y funcionamiento del sistema. Sea el siguiente sistema de control: La función de transferencia de lazo abierto y de lazo cerrado son: G(S) = K S(S + 4) C(S) R(S) = K S2 + 4S + K La ecuación característica de lazo cerrado: s2 + 4S + K = 0
  3. 3. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 3 Las raíces de la ecuación característica o polos de lazo cerrado son: S1, S2 = −2 ± √4 − K Cuya solución es: De la gráfica: El sistema es estable si k>0, dado que en esta condición ambos polos están en el lado izquierdo del plano S. Respuesta Transitoria: 1. Sobreamortiguado (ζ >1)  Polos reales y diferentes (0 4) 4. Sin amortiguamiento (ζ =0)  Polos imaginarios No hay valor de K que haga que el sistema tenga este tipo de respuesta.
  4. 4. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 4 GRAFICA DEL LUGAR GEOMÉTRICO DE LAS RAÍCES Considere el siguiente sistema de control, la función de transferencia de lazo cerrado es: 1 + G(s)H(s) = 0  G(s)H(s) = −1 El término G(S)H(S) es un cociente de polinomios en S. Como G(s)H(s) es un cociente de polinomios en s. Como G(s)H(s) es una cantidad compleja se puede representar en , magnitud y ángulo. Condición de ángulo: ∠G(s)H(s) = ±180°(2K + 1) (K = 0,1,2, … . ) Condición de magnitud: │G(s)H(s)│=1 Los valores de S que cumplen tanto las condiciones de ángulo como las de magnitud son las raíces de la ecuación características, o polos en lazo cerrado. El lugar geométrico de las raíces es una gráfica de los puntos del plano complejo que sólo satisfacen la condición de ángulo. Las raíces de la ecuación característica (los polos en lazo cerrado) que corresponden a un valor específico de la ganancia se determinan a partir de la condición de magnitud.
  5. 5. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 5 Magnitud y Ángulo en el plano s. Por ejemplo Si G(s)H(s) es: G(s)H(s) = K(s + Z1) (s + p1)(s+ p2)(s+ p3)(s + p4) En donde −p2 𝑦 − p3 son polos complejos conjugados, el ángulo de G(s)H(s) es: ∠G(s)H(s) = ∠(s+ Z1)− ∠(s+ p1) − ∠(s + p2 ) − ∠(s + p3 ) − ∠(s + p4) ∠G(s)H(s) = ∅1 − θ1 − θ2 − θ3 − θ4 La magnitud de G(s)H(s) para este sistema es: │G(s)H(s)│ = K│s + Z1│ │s + p1││s + p2││s + p3││s + p4│ │G(s)H(s)│ = K B1 A1A2 A3A4
  6. 6. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 6 Reglas generales para construir los lugares geométricos de las raíces. a) Inicio y final de las trayectorias: Las trayectorias de lugar geométrico de las raíces empiezan en los polos en lazo abierto G(s)H(s) con K=0 y terminan en los ceros de G(s)H(s) o en el infinito (ceros finitos o ceros infinitos) con K=∞. b) Trayectorias sobre el eje real: Cada parte del lugar geométrico de las raíces sobre el eje real se extiende sobre un rango de un polo o cero a otro polo o cero. Existen trayectorias sobre el eje real si la cantidad total de polos y ceros reales de G(s)H(s) a la derecha de un punto de prueba es impar. c) Ubicación de los ceros infinitos: Cuando el lugar geométrico de las raíces tiende a infinito (s→ ∞) lo hace en forma asintótica (en línea recta).  Numero de Asíntotas (#As): #As = np − nZ Donde: np= Número de polos de G(s)H(s) nZ =Número de ceros finitos de G(s)H(s)  Centroide de las Asíntotas (𝜎0) 𝜎0= ∑ 𝑃𝑖 − ∑ 𝑍𝑖 np − nZ Donde: ∑ Pi = Suma de valores de los polos ∑ Zi =Suma de valores de los ceros.  Ángulo de las Asíntotas (∠𝐴 𝑆) ∠𝐴 𝑆 = ±180°(2𝐾 + 1) np − nZ ( 𝐾 = 0,1,2, … . )
  7. 7. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 7 d) Puntos de quiebre o de ruptura(𝐒 𝐪):  Cuando existen trayectorias entre dos polos o dos ceros reales, existe puntos de ruptura en el cual el lugar de las raíces deja el eje real. Procedimientos para determinar los puntos de quiebre: I. De la ecuación característica, despejar K. II. Derivar una vez con respecto a S e igualar a cero la ecuación resultante. III. Obtener las raíces de la ecuación obtenidas en el inciso (II), seleccionar el o los puntos de quiebre del sistema. Si G(s)H(s) = K A(s) B(s) La ecuación característica seria 1 + G(s)H(s) = 1 + K A(s) B(s) = B(s)+ KA(s) = 0 Despejando K: K = −B(s) A(s) Los puntos de ruptura se determinan resolviendo la siguiente ecuación. dK dS = 0 e) Ganancia de quiebre (Kq): Es el valor de K en el punto de quiebre. Se obtiene utilizando la condición de magnitud en el punto Sq. f) Ganancia Crítica (Kc): Es el valor de K que hace que el sistema se encuentre en el límite de estabilidad. Se obtiene aplicando el criterio de Routh-Hurwitz en la ecuación característica, se establece el rango de valores de K para que el sistema sea estable. Los límites de ese rango definirán los Kc. g) Frecuencia Crítica (Wc): El valor de las raíces (polos) cuando se cruza el eje imaginario; esto es cuando K=Kc, se obtiene sustituyendo Kc en el polinomio auxiliar de la tabla de Routh. h) Pertenencia de un punto a la trayectoria del LGR: Para que un punto s pertenezca a la trayectoria del LGR debe cumplir la condición de ángulo: ∠G(s)H(s) = ±180°(2K + 1) (K = 0,1,2, … . )
  8. 8. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 8 i) Calculo de K para cualquier punto s del LGR: Si un punto s pertenece al LGR se puede obtener la ganancia K que permite tener ese punto. j) Calculo del ángulo de salida (o ángulo de llegada) de una trayectoria a partir de un polo complejo (un cero complejo): Para trazar los lugares geométricos de las raíces con una precisión razonable, debemos encontrar las direcciones de los lugares geométricos de las raíces cercanas a los polos y ceros complejos. Si se selecciona un punto de prueba y se mueve en la cercanía precisa del polo complejo (o del cero complejo), se considera que no cambia la suma de las contribuciones angulares de todos los otros polos y ceros. Ángulo de salida desde un polo complejo=180° -(Suma de los ángulos de vectores hacia el polo complejo en cuestión desde otro polos). + (Suma de los ángulos de vectores hacia el polo complejo en cuestión desde los ceros). Ángulo de llegada a un cero complejo=180° -(Suma de los ángulos de vectores hacia el cero complejo en cuestión desde los otros ceros.) + (Suma de los ángulos de vectores hacia el cero complejo en cuestión desde los polos.)
  9. 9. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 9 EJEMPLO N°1: Considere el sistema de la figura: Trace la gráfica del lugar geométrico de las raíces y determine el valor de K tal que el factor de amortiguamiento relativo ζ de los polos dominantes complejos conjugados en lazo cerrado sea 0.5. Para el sistema determinado, la condición de ángulo se convierte en: ∠G(s)H(s) = ∠ 𝐾 𝑠( 𝑠+1)( 𝑠+2) = −∠(s)− ∠(s + 1) − ∠(s + 2) = ±180°(2K + 1) (Para K=0,1,…) La condición de magnitud es: │G(s)H(s)│ = │ K s(s + 1)(s+ 2) │ = 1 K = │S││S + 1││S + 2│ 1.- Inicio y final de las trayectorias: Las trayectorias del L.G.R empiezan en los polos de lazo abierto (0,-1 y -2) con K=0, y terminan en el infinito con K=∞ 2.- Trayectorias sobre el eje real: Las trayectorias del L.G.R. sobre el eje real existen entre los polos (0 y -1) y de (-2 a -∞). 3.-Ubicación de los ceros infinitos: La cantidad de trayectorias del L.G.R. que tienden a infinito son 3, ya que no existen ceros finitos. #As = np − nZ = 3 − 0 = 3 σ0= ∑ Pi − ∑ Zi np − nZ = (0 − 1 − 2) − (0) 3 = −1 ∠AS = ±180°(2K + 1) np − nZ = ±180°(2K + 1) 3 = ±60°(2K + 1) = ±60°,±180° 4.- Puntos de quiebre o de ruptura (Sq): Como existe lugar de las raíces entre dos polos (0 y -1), entonces existe un punto de quiebre.
  10. 10. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 10 De la ecuación característica despejamos K: 1 + K s(s + 1)(s+ 2) = 0 𝐾 = −(𝑠3 + 3𝑠2 + 2𝑠) Derivando K respecto a S e igualando a cero tenemos: 𝑑𝐾 𝑑𝑠 = −(3𝑠2 + 6𝑠 + 2) = 0 3𝑠2 + 6𝑠 + 2 = 0 Resolviendo tenemos: s = −0.422 s = −1.577 Como el punto de ruptura debe estar entre (0 y -1) entonces el punto sería: sq = −0.422 5.- Ganancia de quiebre (Kq): Utilizando el punto de quiebre sq calculamos la ganancia de quiebre con la condición de magnitud. 𝐾 = │𝑠( 𝑠 + 1)( 𝑠 + 2)│𝑠 𝑞 = (0.422)(0.578)(1.578) = 0.385 6.-Ganancia Crítica (Kc): Se obtiene aplicando el criterio de Routh-Hurwitz en la ecuación característica: La ecuación característica es s3 + 3s2 + 2s + K = 0 La tabla de Routh es: La ganancia crítica se obtiene de: 6 − 𝐾𝑐 3 = 0 𝐾𝑐 = 6 7.- El punto crítico se obtiene del polinomio auxiliar: 3sc 2 + Kc = 0 3sc 2 + 6 = 0 sc = ±1.414j
  11. 11. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 11 Para determinar la ganancia K que permite tener una respuesta con relación de amortiguamiento ζ =0. 5. Primero se determina el punto s, que este sobre el L.G.R y que este sobre la recta de relación de amortiguamiento ζ = 0.5 Se determina la ecuación de la recta de ζ =0. 5 β = cos−1 ζ = cos−1(0.5) = 60° y = x tan(120°) = −1.732x con esta ecuación de la recta se propone un valor en X y se determina el valor en Y, el punto debe de cumplir la condición de ángulo para que este sobre el L.G.R: El punto que cumple con las dos condiciones es s=-0.333+j0.577 Aplicando la condición de magnitud: K=│𝑠( 𝑠 + 1)( 𝑠 + 2)│𝑠=−0.333+𝑗0.577 = (0.666)(0.882)(1.764) = 1.036 La ganancia que me permite tener una respuesta con una relación de amortiguamiento ζ = 0.5 es K=1.036
  12. 12. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 12 EJEMPLO N°2: Considere el sistema de la figura Trace la gráfica del lugar geométrico de las raíces y determine el valor de K tal que el factor de amortiguamiento relativo ζ de los polos dominantes complejos conjugados en lazo cerrado sea 0.6. Para el sistema determinado, la condición de ángulo se convierte en: ∠G(s)H(s) = ∠ 𝐾 (𝑠 + 5) 𝑠( 𝑠 + 1)( 𝑠 + 2) = ∠(s + 5) − ∠(s)− ∠(s+ 1) − ∠(s + 2) = ±180° La condición de magnitud es: │G(s)H(s)│ = │ K(s + 5) s(s + 1)(s+ 2) │ = 1 K = │S││S + 1││S + 2│ │s + 5│
  13. 13. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 13 1.-Inicio y final de las trayectorias: Las trayectorias del L.G.R. empiezan en los polos de lazo abierto (0,-1 y -2) con K=0 y terminan, una en (-5) y dos en el infinito con K= ∞. 2.-Trayectoria sobre el eje real: Las trayectorias del L.G.R sobre el eje real existen entre los polos (0 y -1) y de (-2 a -5). 3.- Ubicación de los ceros infinitos: La cantidad de trayectorias del L.G.R. que tienden a infinito son 2, ya que solo existe un cero finito. #As = np − nZ = 3 − 1 = 2 σ0= ∑ Pi − ∑ Zi np − nZ = (0 − 1 − 2) − (−5) 2 = 1 ∠AS = ±180°(2K+ 1) np − nZ = ±180°(2K + 1) 2 = ±90° 4.-Puntos de quiebre o de ruptura (Sq): Como existe lugar de las raíces entre dos polos (0 y -1) , entonces existe un punto de quiebre. De la ecuación característica despejamos K: K = − s(s + 1)(s + 2) (s + 5) Derivando K respecto a s e igualando a cero tenemos: dK ds = 2(s3 + 9s2 + 15s + 5) (s + 5)2 = 0 𝑠3 + 9𝑠2 + 15𝑠 + 5 = 0 Resolviendo: s = −0.447 s = −1.609 s = −6.943 Como el punto de ruptura debe estar entre (0 y -1) entonces el punto sería: Sq= -0.447 5.-Ganancia de quiebre (Kq): Utilizando el punto de quiebre Sq calculamos la ganancia de quiebre con la condición de magnitud.
  14. 14. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 14 K = │ s(s + 1)(s + 2) (s + 5) │sq = │s││s + 1││s + 2│ │s + 5│ │s=−0.477 = (0.447)(0.553)(1.553) 4.553 = 0.084 6.-Ganancia Crítica (Kc): Se obtiene aplicando el criterio de Routh-Hurwitz en la ecuación característica La ecuación característica es s3 + 3s2 + (2 + K)s + 5K = 0 La tabla de Routh es: La ganancia crítica se obtiene de: 6 − 2𝐾𝑐 3 = 0 𝐾𝑐 = 3 7.- El punto crítico se obtiene del polinomio auxiliar: 3sc 2 + 5Kc = 0 3sc 2 + 15 = 0 sc = ±2.236j Para determinar la ganancia K que permite tener una respuesta con relación de amortiguamiento ζ = 0.6 Primero se determina el punto s, que este sobre el L.G.R y que este sobre la recta de relación de amortiguamiento ζ = 0.6.
  15. 15. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 15 Se determinan los puntos que estén sobre la recta de ζ = 0.6 β = cos−1 ζ = cos−1(0.6) = 53.13° y = xtan(126.87°) = −1.333x Con esta ecuación de la recta se propone un valor en X y se determina el valor en Y, el punto debe cumplir la condición de ángulo para que este sobre el L.G.R. El punto que cumple con las dos condiciones es s=-0.398+0.532j Aplicando la condición de magnitud: 𝐾 = │s││s + 1││s + 2│ │s + 5│ │ 𝑆=0.398 +0.532𝑗 = (0.664)(0.803)(1.688) (4.632) = 0.194 La ganancia que me permite tener una respuesta con una relación de amortiguamiento de ζ = 0.6 Es: K=0.194
  16. 16. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 16 EJEMPLO N°3: Considerando el sistema de la figura: Para el sistema determinado, la condición de ángulo es: ∠G(s)H(s) = ∠ K s(s + 2 + 2j)(s + 2 − 2j) = −∠(s) − ∠(s + 2 + 2j) − ∠(s + 2 − 2j) = ±180° La condición de magnitud es: │G(s)H(s)│ = │ K s(s + 2 + 2j)(s + 2 − 2j) │ = 1 K = │s││(s + 2 + 2j)││(s + 2 − 2j)│ 1.- Inicio y final de las trayectorias: Las trayectorias del L.G.R empiezan en los polos de lazo abierto (0,-2-2j y -2+2j) con K=0, y terminan, en el infinito con K= ∞. 2.- Trayectoria sobre el eje real: Las trayectorias del L.G.R sobre el eje real existen entre 0 y -∞. 3.-Ubicación de los ceros infinitos: La cantidad de trayectorias del L.G.R que tienden a infinito son 3, ya que no existen ceros finitos. #As = np − nZ = 3 − 0 = 3 σ0= ∑ Pi − ∑ Zi np − nZ = (0 − 2 + 2j − 2 − 2j) 3 = −1.333 ∠AS = ±180°(2K + 1) np − nZ = ±180°(2K + 1) 3 = ±60°(2K + 1) = ±60°,±180°
  17. 17. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 17 4.-Puntos de quiebre o de ruptura (Sq): No existe punto de quiebre. 5.-Ganancia de quiebre (Kq): No existe ganancia de quiebre. 6.-Ganancia Crítica (Kc): Se obtiene aplicando el criterio de Ruth-Hurwitz en la ecuación característica: La ecuación característica es s3 + 4s2 + 8s + K = 0 La tabla de Routh es: 7.-El punto crítico se obtiene del polinomio auxiliar: 4sc 2 + Kc = 0 4sc 2 + 32 = 0 sc = ±2.828j 10.-Calculo del ángulo de salida (o ángulo de llegada) : De una trayectoria a partir de un polo complejo (un cero complejo). Se toma como polo complejo s=-2+2j Ángulo de salida= 180°-(∠(s) + ∠(s + 2 + 2j)) = 180° − (135° + 90°) = −45°
  18. 18. UNIVERSIDAD NACIONALMAYORDE SANMARCOS E.A.P IngenieríaEléctrica SISTEMA DE CONTROL I Profesor:CarlosJoMiranda 18 Conclusiones:  Debe observarse que, de este modo, se pasa del estudio del sistema en lazo cerrado al estudio de característica del sistema en lazo abierto, lo cual debe permitir mayor facilidad en el cálculo.  Se define el lugar geométrico de las raíces como el conjunto de puntos del plano S en los que se verifica la condición de ángulo. En conclusión, un punto que pertenece al lugar geométrico de las raíces es un posible polo del sistema en lazo cerrado; para ello únicamente es necesario validar la condición de módulo, y ésta se cumplirá para un valor determinado de la ganancia del sistema en lazo abierto. Sin embargo, un punto del plano S que no pertenezca al L.G.R no puede ser polo en lazo cerrado porque no verifica la condición de ángulo, aunque varíe la ganancia del sistema en lazo abierto. Bibliografía:  Notas de Sistemas de Control I M.C. Jaime Cid Monjaraz  INGENIERÍA DE CONTROL M.C. JOSÉ MANUEL ROCHA NUÑEZ  LUGAR GEOMÉTRICO DE LAS RAÍCES M.C. ELIZABETH GPE. LARA HDZ

COLPOS PARTICIPA EN EL PRIMER FORO REGIONAL DE INNOVACIÓN Y TRANSFERENCIA DE TECNOLOGÍA


Montecillo, Texcoco, Edo. de México, a 08 de junio de 2016.
La Red de Vinculación Región Centro Sur de la Asociación Nacional de Universidades e Instituciones de Educación Superior (ANUIES) y la Universidad Autónoma de Tlaxcala realizaron el pasado 19 y 20 de mayo en el Teatro Universitario de dicha Universidad el Primer Foro Regional de Innovación y Transferencia de Tecnología. Dicho evento incluyó una Expo de casos de éxito en innovación y transferencia de tecnología, donde participaron 20 instituciones afiliadas a la ANUIES.
El objetivo del Foro fue el intercambio de conocimientos y experiencias en las prácticas de investigación y desarrollo tecnológico innovador para dar fortaleza a las instituciones de educación superior del Centro Sur de ANUIES vía vinculación con sectores sociales y productivos.
El evento fue inaugurado por el Rector de la Universidad Autónoma de Tlaxcala, el Mtro. Rubén Reyes Córdoba y el M.C. Rogelio Hipólito Tacuba, Coordinador de la Red de Vinculación Centro Sur de la ANUIES. En su intervención, el Rector de la Universidad dijo que la innovación y la transferencia de tecnología son un impacto positivo que ha permitido a quienes las ejercen, alcanzar un mayor crecimiento económico y productivo. Por lo que en este foro se abordarán temas relacionados con los métodos de desarrollo tecnológico y de innovación, que permitirá la interacción entre expertos en la materia y los asistentes.
“Con un Modelo Humanista Integrador basado en Competencias (MHIC), la UATX permite a los estudiantes ser críticos y capaces de solucionar problemas sociales, siendo éste el eje central del quehacer cotidiano. Por lo anterior, es una gran responsabilidad formar profesionistas que en un futuro se incorporen al desarrollo del país”, concluyó.
El panel de expertos contó con la participación del M.C. Alfredo Martínez de la Torre, Director General de la Fundación Educación Superior Empresa (FESE) quien presentó el tema: “Programas de fomento para impulsar el emprendimiento y la innovación en las IES”; el Dr. Jaime Cid Monjaraz, Investigador de la Benemérita Universidad Autónoma de Puebla platicó sobre “La Innovación y Transferencia de Tecnología de las IES”, finalmente la MC. Emelia Hernández Priego, Subdirectora de la Dirección Divisional de Patentes (IMPI) habló sobre “patentes y registro de marcas”.
La Conferencia Magistral estuvo a cargo de Arturo Villegas, autor de los libros Formando ADN empresarial y Cómo ser feliz en el trabajo, quien motivo a los asistentes a hacer cosas nuevas cada día, a innovar y a cumplir sus sueños.
El COLPOS participó en el foro Innovación y Transferencia Tecnológica en el Sector Agropecuario con las ponencias del Dr. Jorge Cadena Iñiguez, académico del Campus San Luis Potosí y del Dr. José Regalado López del Campus Puebla.
Se expusieron diversos temas como: Herramientas y métodos para el desarrollo tecnológico; la fuerza de las incubadoras, aceleradoras, los parques científicos y tecnológicos; así como las Patentes y transferencia de tecnologías; y la relación costo/beneficio para la academia, sin faltar el planteamiento en este evento de las implicaciones del mercadeo de la ciencia.
Al finalizar las conclusiones generales, el Mtro. Rogelio Hipólito Tacuba, Coordinador de la Red de Vinculación de la Región Centro Sur de la ANUIES, agradeció el apoyo brindado a los coordinadores y autoridades de la Universidad Autónoma de Tlaxcala para la realización de este importante evento que busca extender las perspectivas en materia de innovación y desarrollo tecnológico.